
Assist. Prof.Dr. Ümit ATİLA

INTRODUCTION

● Storage of data in variables and arrays is
temporary—such data is lost when a
program terminates.

● Files are used for permanent retention
of data.

● Computers store files on secondary
storage devices, especially disk storage
devices.

2

Data Hierarchy
● All data items processed by a computer are reduced to combinations of zeros and

ones.

● Bit: The smallest data item in a computer can assume the value 0 or the value
1.

● Byte: Digits, letters, and special symbols are referred to as characters. Since
computers can process only 1s and 0s, every character in a computer’s
character set is represented as a pattern of 1s and 0s (called a byte). 1 byte =
8 bits

● Field: Composed of characters. Field is a group of character that conveys
meaning.

– Ex: person name

● Record: A group of related fields.

– Represented by a struct or a class

– Ex: In a payroll system, a record for a particular employee that contained
his/her identification number, name, address, etc.

● File: A group of related records.

– Ex: Payroll file.

● Database: A group of related files.
3

Data Hierarchy

4

Data Hierarchy

● Record Key: To facilitate the retrieval of
specific records from a file, at least one field
in each record is chosen as a record key.

● Ex: In a school management system student id
number could be chosen as a record key.

● Sequential File: Most popular way of
organizing records in a file

● Records typically sorted by record key

5

Files and Streams
● C views each file as a sequence of bytes

● File ends with the end-of-file marker

– Or, file ends at a specified byte

● Stream created when a file is opened. Streams provide
communication channels between files and programs.

● Provide communication channel between files and programs

● Opening a file returns a pointer to a FILE structure

– Example file pointers:

– stdin - standard input (enables reading data from
keyboard)

– stdout - standard output (enables printing data on screen)

– stderr - standard error (screen)
6

Files and Streams
● FILE structure (opening a file returns a pointer to FILE structure)

that contain information used to process file

● File descriptor

– Index into operating system array called the open file table

● File Control Block (FCB)

– Found in every array element, system uses it to administer
the file

● Standard input, standard output and standard error are
manipulated using file pointers stdin, stdout and stderr

7

Files and Streams
● Read/Write functions in standard library

● fgetc

– Reads one character from a file

– Takes a FILE pointer as an argument

– fgetc(stdin) equivalent to getchar()

● fputc

– Writes one character to a file

– Takes a FILE pointer and a character to write as an argument

– fputc('a', stdout) equivalent to putchar('a')

● fgets

– Reads a line from a file

● fputs

– Writes a line to a file

● fscanf / fprintf

– File processing equivalents of scanf and printf
8

CREATING A SEQUENTIAL ACCESS
FILE

● C imposes no file structure

● No notion of records in a file

● Programmer must provide file structure

● Creating a File

● FILE *myPtr;

– Creates a FILE pointer called myPtr

● myPtr = fopen("myFile.dat", openmode);

– Function fopen returns a FILE pointer to file specified

– Takes two arguments – file to open and file open mode

– If open fails, NULL returned

● fprintf

– Used to print to a file

– Like printf, except first argument is a FILE pointer (pointer to the
file you want to print in) 9

CREATING A SEQUENTIAL ACCESS
FILE

● feof(FILE pointer)

● Returns true if end-of-file indicator (no more data to
process) is set for the specified file

● fclose(FILE pointer)

● Closes specified file

● Performed automatically when program ends

● Details

● Programs may process no files, one file, or many files

● Each file must have a unique name and should have its own
pointer

10

CREATING A SEQUENTIAL ACCESS
FILE

● Table of file open modes

11

Creating a Sequential File

12

Creating a Sequential File

13

READING DATA FROM A
SEQUENTIAL ACCESS FILE

● Reading a sequential access file

● Create a FILE pointer, link it to the file to read

myPtr = fopen("myFile.dat", "r");

● Use fscanf to read from the file

– Like scanf, except first argument is a FILE pointer

fscanf(myPtr, "%d%s%f", &myInt, &myString, &myFloat);

● Data read from beginning to end

● File position pointer

– Indicates number of next byte to be read / written

– Not really a pointer, but an integer value (specifies byte location)

– Also called byte offset

● rewind(myPtr)

– Repositions file position pointer to beginning of file (byte 0)

14

Reading & Printing a Sequential
File

15

 Application-1

16

 Application-1

17

 Application-1

18

 Application-1

19

READING DATA FROM A
SEQUENTIAL ACCESS FILE

● Sequential access file

● Cannot be modified without the risk of destroying other data

● Fields can vary in size

– Different representation in files and screen than internal
representation

– 1, 34, -890 are all ints, but have different sizes on disk

300 White 0.00 400 Jones 32.87 (old data in file)

● If we want to change White's name to Worthington

20

