/EMBHQ{Er‘;emméng/
Languages li
Lecture 7: File Operations
(Part-1)

f.Dr. Umit ATILA

=

/

INTRODUCTION

Storage of data in variables and arrays is
temporary—such data is lost when a
program terminates.

Files are used for permanent retention
of data.

Computers store files on secondary
storage devices, especially disk storage
devices.

/ /

Data Hierarch

All data items processed by a computer are reduced to combinations of zeros and

ones.
. Bit: The smallest data item in a computer can assume the value 0 or the value
1.

. Byte: Digits, letters, and special symbols are referred to as characters. Since
computers can process only 1s and Os, every character in a computer’s
character set is represented as a pattern of 1s and Os (called a byte). 1 byte =
8 bits

. Field: Composed of characters. Field is a group of character that conveys
meaning.

— Ex: person name
- Record: A group of related fields.
— Represented by a struct or a class

— Ex: In a payroll system, a record for a particular employee that contained
his/her identification number, name, address, etc.

. File: A group of related records.
— Ex: Payroll file.
. Database: A group of related files.

!gata Hierarchy\

Judy Feld

!

01001010 Byte (ASCIH character |)

!

1 Bit

//\-

Data Hiera rchy

Record Key: To facilitate the retrieval of
specific records from a file, at least one field
in each record is chosen as a record key.

. Ex: In a school management system student id
number could be chosen as a record key.

Sequential File: Most popular way of
organizing records in a file

. Records typically sorted by record key

Files and Streams

C views each file as a sequence of bytes
File ends with the end-of-file marker
— Or, file ends at a specified byte

Stream created when a file is opened. Streams provide
communication channels between files and programs.

Provide communication channel between files and programs
Opening a file returns a pointer to a FILE structure
— Example file pointers:

— stdin - standard input (enables reading data from
keyboard)

— stdout - standard output (enables printing data on screen)

— stderr - standard error (screen)

/ /

T e s

Files and Streams

FILE structure (opening a file returns a pointer to FILE structure)
that contain information used to process file

File descriptor
—- Index into operating system array called the open file table
File Control Block (FCB)

— Found in every array element, system uses it to administer
the file

Standard input, standard output and standard error are
manipulated using file pointers stdin, stdout and stderr

1] ., i 4 g b

= |
= .
Em
-
| —— |

Files and Streams

Read/Write functions in standard library
fgetc
— Reads one character from a file
— Takes a FILE pointer as an argument
— fgetc(stdin) equivalent to getchar()
fputc
— Writes one character to a file
— Takes a FILE pointer and a character to write as an argument
~ fputc('a’, stdout) equivalent to putchar('a’)
fgets
— Reads a line from a file
fputs
— Writes a line to a file
fscanf / fprintf
— File processing equivalents of scanf and printf

CREATING A SEQUENTIAL ACCESS—
FILE

C imposes no file structure
No notion of records in a file
Programmer must provide file structure
Creating a File
FILE *myPtr;
— Creates a FILE pointer called myPtr
myPtr = fopen("myFile.dat", openmode);
— Function fopen returns a FILE pointer to file specified
— Takes two arguments — file to open and file open mode
— If open fails, NULL returned
fprintf
— Used to print to a file

— Like printf, except first argument is a FILE pointer (pointer to the
file you want to print in) :

CREATING A SEQUENTIAL ACCESS
FILE

feof(FILE pointer)

. Returns true if end-of-file indicator (no more data to
process) is set for the specified file

fclose(FILE pointer)

. Closes specified file

. Performed automatically when program ends
Details

. Programs may process no files, one file, or many files

. Each file must have a uniqgue name and should have its own
pointer

10

CRE UENTIAL ACC

FILE

Table of file open modes

Mode |Description

r Open a file for reading.

L Create a file for wrniing. If the file already exists,
discard the current contents.

a Append; open or create a file for wrinng at end of file.

r+ Open a file for update (readmmg and wnting).

W+ Create a file for update. If the file already exists,
discard the current contents.

a+ Append; open or create a file for update; wnting 15
done at the end of the file.

A%

- Creating a Sequential File

2

1|H#include <stdio.h>

3 =int main(void)

int hesapho;

char ad[3@];

double bakiye;

FILE *mfPtr; // musteri.dat dosyasi isaretcisi
if{(mfPtr = fopen("musteri.dat™,"w")) == NULL)

printf({"Dosya acilamadi\n"};

else

1

printf{"Hesap no, isim ve bakiye girin “\n");

printf{"Veri girisini bitirmek icin EOF gir"™); //EOF = Ctrl + z
printf{"? ");

scanf ("%¥d¥=¥1f" ,&he=zaplNo, ad, &bakiyve);

while(!feof(stdin))

1
fprintf{mfPtr,"®d %= %.2f “n",
hesapho,ad, bakiye);
printf ("2 ");
scanf("®¥d¥s¥1f",&he=zapho, ad, &bakiyve);
¥
fclose(mfPtr);
¥
return @,

12

e ——

reating a Sequential File

READING DATAFROMA
SEQUENTIAL ACCESS FILE

Reading a sequential access file
Create a FILE pointer, link it to the file to read
myPtr = fopen("myFile.dat", "r");
Use fscanf to read from the file
— Like scanf, except first argument is a FILE pointer
fscanf(myPtr, "%d%s%f", &mylnt, &myString, &myFloat);
Data read from beginning to end
File position pointer
— Indicates number of next byte to be read / written
— Not really a pointer, but an integer value (specifies byte location)
— Also called byte offset
rewind(myPtr)
— Repositions file position pointer to beginning of file (byte 0)

14

File

e L= AL A T = T

g

P 2 2 2 B 2 2 2 S S
s TR W o Y v TR N T Y [S I I N Y S '

21

-#include <stdio.h>

-int main(void)

{

i

int hesapNo;

char ad[48];

double bakiye;

FILE *mfPtr; // musteri.dat dosyasi isaretcisi

if((mfPtr = fopen{"musteri.dat”,"r")) == NULL)
printf({“"Dosya acilamadiin™);

else

d
printf({“%-18s%-13s%s\n", “HesapNo”,"Ad","Bakiye");
tscant(mfPtr, "Rdisklf" ,&hesapho,ad,&bakiye);

while{!feof({mfPtr))

i
printf("%-10d%-13s%7.2f\n", hesapNo,ad,bakiye);
fscant(mfPtr, "%d%sk1lt" ,&hesapho, ad,&bakiye);
h
tclose(mfPtr);
L
return 8;

10

1
2
3
4
5
)
7
2]
S

10
11
12
13
14
15
16
17
18

-#1include <stdio.h>|

Jint main(void)

{

int secim, hesapNo;
double bakiye;
char ad[48];
FILE *mfPtr;
if((mfPtr = fopen("musteri.dat"”,"r")) == NULL)
printf("Dosya acilamadi\n");
else
{
printf("Secim yapiniz\n"
"l-Hesapta para olmayan hesaplar\n”
"2-Borclu olan hesaplar\n”
"3-Hesapta para olan hesaplar\n”
"4-Cikis\n");
scanf("%d",&secim);

16

15
28
21
22
23
24
25
26
27
28
29
368
31
32
33
34
35
36
37
38
39
48
41

while(secim !=4)

1

fscanf(mfPtr, "%d¥s¥1f",&hesapNo,ad,&bakiye);
switch(secim)
{

case 1:

printf("\nPara olmayan hesaplar :\n");
while(!feof(mfPtr))

1
if(bakiye==0)
printf("%-10d%-13s%7.2f\n", hesapNo,ad,bakiye);
fscanf(mfPtr, "%d%s%1f",&hesapNo,ad, &bakiye);
¥
break;
case 2:
printf("\Borclu hesaplar :\n");
while(!feof(mfPtr))

1
if(bakiye<®)
printf("%-18d%-13s%7.2f\n", hesapNo,ad,bakiye);
fscanf(mfPtr, "%d¥%s%1",&hesapNo, ad, &bakiye);
¥
break;

;¢

printf(“\nPara olan hesaplar :\n");
while(!feof(mfPtr))

{

1f(bakiye>8)

printf("%-10d%-13s%7.2t\n", hesaplNo,ad,bakiye);

fscanf (mfPtr, "%dhs%1f",&hesapllo, ad, &bakiye);

}

break;
I3
rewind(mfPtr);

printf("\n?");
scanft("%d",&secim);

}

printf("Program sonlandi\n");
fclose(mfPtr);

18

Enter regquest

l - List accounts with zerc balances
- List accounts with credit balances

2
3 - List accounts with debit balances
4

- End of ruan
= 1

Accounts with zzerc balances:
300 White 0o.0o0

? 2

Accounts with credit balances:
400 5 tone -42_18

T 3

Accounts with debit bal ances:

100 Jones 24 . 98
200 Do 345._ 67
500 Rich 224 . 62
T 4

End of run.

19

READ FROM A
SEQUENTIAL ACCESS FILE

Sequential access file

Cannot be modified without the risk of destroying other data

Fields can vary in size

— Different representation in files and screen than internal

representation

— 1, 34, -890 are all ints, but have different sizes on disk

300 White 0.00 400 Jones 32.87 (old data in file)
If we want to change White's name to Worthington

300 Worthington 0.00

'

300 White 0.00 400 Jonas 3Z.87

l

300 Worthington 0.00cnas 32Z.87

Diata gets overwritten

/

