CME 112 Programming
Languages Il

Lecture 1- Bitwise Operators
Dr. Umit ATILA

e

BINARY NUMBER SYSTEM

Binary number system uses 0 or 1 for each digit.

For computer systems everything is coded in
binary.

(d,dsd,d,dy), =(dg-2°)+(d; .2t) +(d,.22)+(d;.23) +(d,.2%)
(10011),=(1.29)+(1.2')+(0.22)+(0.23)+(1.2%)=19

HEXADECIMAL NUMBER SYSTEM

Hexadecimal number system has 16 different
symbol.

Decimal 012345678910 11 12 15 14 15
Hexadecimal : 01 2 3 4 56 7 89 A B C D E FE

(3FC), =(3.162)+(F.16)+(C.16°) = 768 + 240 + 12 = 1020
(1FA9)16=(1.163)+(F.162)+(A.161)+(9.16°)=4096+3840+160+9=8105

(75),=(7.161)+(7.16°)=112+5=117

e

SIGNED NUMBERS in BINARY

Variables in C can be sighed or unsigned.
Think of a char type which is 1 byte= 8 bits

&y dg|(as || a4 |(as | 22|21 | 20

If the number is negative then highest level bit
(7th bit in this sample) is considered as sign bit.

If the sign bit is 1 then number is negative,
otherwise number is pozitive.

/ |

SIGNED NUMBERS in BINARY

Decimal equvalent of a sighed binary number can be
found with:
(a,agasa4a;3,2,3,),=(a;.-27)+ (a;.2%)+...+(a;.2t) +(a,.2°)
(1011 1011), = -69 (If the number is signed)
(1011 1011), = 187 (If the number is unsigned)

(1100 1101), =-51 (If the number is signed)
(1100 1101), = 205 (If the number is unsigned)

(0110 1101), = 109 (If the number is signed)
(0110 1101), = 109 (If the number is unsigned)

BITWISE OPERATORS _

Operations on bits at individual levels can be
carried out using Bitwise operations in C.

Bits come together to form a byte which is the
lowest form of data that can be accessed in digital
hardware.

The whole representation of a number is
considered while applying a bitwise operator.

Each bit can assume that the value 0 or the value
1.

BITW TORS

& Bitwise AND
Bitwise Inclusive OR

= Bitwise Exclusive OR
<< Left shift
>> Right shitf

= Ones's complement(unary)

//

/

BitWise AND &

The bitwise AND operator is a single ampersand:
&.

It is just a representation of AND and does its work
on bits and not on bytes, chars, integers, etc.

So basically a binary AND does the logical AND of
the bits in each position of a number in its binary
form.

11001110 & 10011000 = 10001000
5&3=1(101&011=001)

//

Bitwise OR |

Bitwise OR works in the same way as bitwise
AND.

Its result is a 1 if one of the either bits is 1
and zero only when both bits are O.

Its symbol is '|' which can be called a pipe.
11001110 | 10011000 =11011110
5|13=7(101]011=111)

Bitwise Exclusive OR A

The Bitwise EX-OR performs a logical EX-OR
function or in simple term adds the two bits
discarding the carry.

Thus result is zero only when we have 2 zeroes or 2
ones to perform on.

Sometimes EX-OR might just be used to toggle the
bits between 1 and 0.

Thus:i=1i”"1 when used in a loop toggles its
values between 1 and O.

5A3=6(101011 =110)

10

itwise Exclusive OR A

0
0
1
1

, O B

—, O O O

) B P O

oo + = O

11

Right Shift >>

The symbol of right shift operator is >>.

For its operation, it requires two operands.

It shifts each bit in its left operand to the right. The number
following the operator decides the number of places the bits
are shifted (i.e. the right operand).

Thus by doing number >> 3 all the bits will be shifted to the
right by three places and so on.

Blank spaces generated on the left most bits are filled up by
Zeroes

Right shift can be used to divide a bit pattern by 2 as shown:
10>>1=5(1010)>>1 =(0101)

12

/ "

g e

Right Shift >>

If the number is signed, then sign extension is
done in right shift operation.

Sign extension puts the highest bit’s value of the
number into the blank spaces on the left most bits
generated.

i000000000000001 00000011 0000D000G
11110000000000000010000001 00000

In this sample, as the original number’s highest bit
is 1, new genarated bits are also 1 after right shift.

13

Left Shift <<

The symbol of left shift operator is <<.

It shifts each bit in its left operand to the left.
It works opposite to that of right shift
operator.

Blank spaces generated on the right most
bits are filled up by zeroes

Left shift can be used to multiply an integer
in multiples of 2 as in:

- 5<<1-10(101) << 1=(1010)

14

Unary Operator ~'One's -

Complement

The one's complement (~) or the bitwise
complement gets us the complement of a
given number.

Thus we get the bits inverted, for every bit 1
the result is bit 0 and conversely for every bit
O we have a bit 1.

~5=2 (~101 = 010)

15

N -

PRACTISE on BITWISE OPERATIONS

It is better to know how bitwise operations take
place while we write programs.

OR operator is the union of bits of two numbers
having the value 1.

10101010101 010101010101010101 010
010101010101010101010101010710101

11113171313133131733131313131731731731317313171317317131731311

N -

PRACTISE on BITWISE OPERATIONS

AND operator is intersection of bits of two
numbers having the value 1.

10101010101 0101010103101010101 010
010101010101010101010101010710101

0000000000000 0O00000D0000000ODD0O0O

In this sample there is no bits both have 1. So the
intersection of all bits are 0.

/ "

PRACTISE on BITWISE OPERATIONS

OR operator can be used to make a number’s bits 1.

Before : 00000000111111110000000011111111
Bits to be 1 : 00010000000000000001000000000000
After : 00010000111111110001000011111111

AND operator can be used to check if a bitis 1 or not.
00000111010110111100110100010101

00000000000000010000000000000000—~> Mask

EYBOARD CODES

- When the data which shows the states of keys
information read from memory, the meaning of

every bit is :
Bitnumber Stae
0 Right shift pressed/not
1 Left shift pressed/not
2 Ctrl pressed/not
3 Alt pressed/not
4 Scroll on/off
5 Num Lock on/off
6 Caps Lock On/off

19

/

EXAMPLE

For checking whether numlock is on or off, we need to
check bit number 5 of the key information data x.

For this purpose we can perform binary AND operation
with x and 32 operands.

For example, if the key information data is 01101011, then
we can use (00100000=32) to check is bit number 5is 1 or

0.
01101011 &
00100000 > Mask

As the bit number 5is 1 in key information data the result
is 32, otherwise result would be O.

20

EXAMPLE

IPv4 adresses are stored in network packages in 32

bit form.

Each 8 bits correspond to a segment of ip number

which is separated by point.

- For example: 192.168.1.2 is Oxc0a80102 in
hexadecimal format.

Lets write a program that reads 32 bits IPv4 adress
and writes each segment separated with points.

EXAMPLE

For this we need to take each 8 bits from
32 bit IPv4 adress using & bitwise
operator with a suitable mask.

For example if we want to take lowest 8
bits we have to use a mask 0x000000ff

which will preserve the lowest 8 bits of
the data.

=

EXAMPLE

If the preserved bits is not the lowest 8 we have to right shift the obtained
number to the lowest 8 bit.

Value :11000000101010000000000100000010 c0a80102 3232235778

Mask :11111111000000000000000000000000 ff000000 4278190080

Result: 11000000000000000000000000000000 c0000000 3221225472
The result we get here is 3221225472 and not 192 as we expected.

The reason is that the obtained number is not in the lowest 8 bit. We need to shift
the number 24 times to the right. (>> 24)

Value :11000000101010000000000100000010 c0a80102 3232235778
Mask :11111111000000000000000000000000 ff000000 4278190080
Result : 00000000000000000000000011000000 c0000000 192

(Vo T S TS I I 1 BY O WL LW S

N I R S Sy Sy
S T T= T I (. T BT S PR I U

XAMPLE

=

#include <=tdio.h>
#Finclude <stdlib.h>

Srfbinary addition
int main()
{

un=signed int x=3,
Tows
cCarry = X & V!

Sum = X

while (carry!=0)

Carry = carry << 1;

X = sum;

YV = CAarry:;

Zum = X 7 ¥:!
cCarry = X & V!

¥

printf("Fd4d", =um) ;

getchar () :

retoarn O:

¥

Binary addititon sample code

Carry;

24

