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Memory Structure 
When a variable defined it is stored 

somewhere in memory 

Memory can be thought as block consist of 
cells. 

When a variable defined, required number of 
cell from memory is allocated for the variable. 

How many cell will be reserved for the variable 
depends on the type of variable. 
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Memory Structure 
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Memory Structure 
 If we illustrate the structure of memory after the code in previous slide. 

 Assume that size of int is 2  byte, size of float 4 byte, size of char byte 

 Each cell represents 1 byte space 

 Memory portion for defined variables starts from the adress 4300 
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Memory Structure 
 When a variable is defined, a space required for the variable is 

reserved in the memory 

 E.g.definition  int num1 reserves 2 byte space for variable 
num1 

 After that if the value 5 is assigned on variable num1, 5 is 
stored in memory location allocated for that variable. 

  Actually, all operations taken on variable num1 is the 
modification of cells in the memory location between 4300 
and 4302.  

 Variable is actually a memory location reserved for a particular 
label. 
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Defining Pointers 
 Pointer is a data type that shows the memory address of a 

data block. 

 veri tipi  *p; 

 Variable p stores the address of a variable which is in <veri 
tipi> type 

 int *iptr; 

 float *fptr; 

 The only thing we should pay attention is defining pointer 
suitable for the data type it points. 

 A float variable must only be pointed by a float type pointer. 
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Defining Pointers 
 To make a pointer show the address of a variable, address 

of the variable should be assigned to pointer. 

 For this purpose we should know the adress of the 
memory location used for the variable. 

 It is possible with address operator &.. 

 &y  gives the address of variable y. 

 int y = 5; 

 int *yPtr; 

 yPtr = &y; 
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Defining Pointers 
After assigning the address of a variable to a 

pointer. Pointer starts to show the address of 
related variable. 

 If we want to access or modify the value of a 
variable with pointer, we should use * 
character in the begining of pointer name.  

All modifications done with * character in the 
begining of pointer name effects the original 
variable. 
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Defining Pointers 
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Defining Pointers 
(Accessing Variables by Pointers) 
• For accessing the value of a variable with pointer, we should 

use * character in the begining of pointer name 
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Defining Pointers 
(Associating Variables with Pointers) 
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Defining Pointers 
 We can change the variable that pointer shows during our 

program continuously. 
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Size of Pointers 
● Pointers generally have a fixed size, for ex. on a 32-bit 

executable they're usually 32-bit. 
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Pointers that Points other Pointers 
 As seen pointers stores the memory addresses of 

variables. 

 Pointer is also a variable and an other pointer that 
shows a pointer can be defined. 

 If we define a pointer variable that shows a pointer; 
we use '**' in the begining of pointer name.  

 Number of * can change. If we define a pointer that 
points an other pointer that points an other pointer 
we have to use ‘***’. 
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Pointers that Points other Pointers 
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Pointer Arithmetic 
 We can use increment, decrement (++,--), addition or subtraction 

operators with pointers. An integer have to be added or 
subtracted. 

 When we increment the pointer by 1, pointer shows the next 
data block. 

 New pointer value depends on the data type that pointer shows. 

int i , *iPtr; 

iPtr = &i; // Assume iPtr shows address 1000 

iPtr += 2  // After this operation new value of  iPtr is 1008 
(iPtr+2*4) 

 Because int data type stored in 4 bytes in memory. 
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Pointer Arithmetic 
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Pointer Arithmetic 
 int i , *iPtr; 

 iPtr = &i; // Assume iPtr shows address  1000  

 (*iPtr) ++; // Causes to increment value stored in the 
address 1000. 

 iPtr ++; // Causes iPtr to show adress 1004 in memory 

 (*iPtr) +=2; // Causes to increment value by 2 stored in 
1000 (*iPtr) =7; // Causes to assign 7 in address 1000. 

 *(iPtr+2) = 5; //Causes to assign 5 in address 1008. 
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Relationship Between Pointers 
and Arrays 
 An array name can be thought of as a constant pointer. 
 Arrays and Pointers are closely related 
 Pointers can also point arrays like they point variables. 

 int dizi [6]; 
 int *ptr; 

 To set them equal use 
– The array name dizi actually is the adress of first 

element of  the array dizi.  
– ptr = dizi; //Now ptr[0] and dizi[0] is same. 

– To explicitly assign ptr to the address of first 
element of dizi 
– ptr = & dizi[0]; 
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Relationship Between Pointers 
and Arrays 
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Relationship Between Pointers 
and Arrays 
 Pointers that shows arrays is generally used with 

 *(ptr + n)   where n indicates the index number 
of element in the array 

 *(ptr + 4)   gets the value of element dizi [ 4 ] 

 Alternatives to access element dizi [ 4 ]  

 ptr[4] 

 *(dizi + 4) 
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Relationship Between Pointers and 
Arrays 
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Relationship Between Pointers and 
Arrays 
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Relationship Between Pointers and 
Arrays 
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Relationship Between Pointers and 
Arrays 

Arrays can contain pointers. 

Can access multiple arrays with arrays of 
pointers. 

We just assign the starting address of 
arrays to the arrays of pointers. 

Any modification you make on array of 
pointer will affect the original array. 
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Relationship Between Pointers 
and Arrays 
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Call by Reference 
 Normally a value of parameter sent to a function does not change. 

And modifications in function does not effect original variable. 

 The case in which the original variable is not changed but its copy is 
sent to a function is called «call by value» or «pass by value». 

 Sometimes we need to return more than one value from a function 
or we need the original variable changed by the function. 

  For this purposes we use "call by reference" or "pass by reference« 

 In call by reference, arguments are not passed with their values, but 
with their addresses.  Thus, all modifications on arguments effect 
the original variable. 
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Call by Value 
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Call by Reference 
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Call by Reference 
 If your function has to return more than one value using pass 

by reference is inevitable. 

 Because return keyword can only send one value out of 
function. 

 For example, we want to write a division function that gives 
division and remainder. 

 In this case, divided number and divisor is sent to function and 
remainder and division should be returned back from 
function. 

 As return keyword can only return one value, second value is 
returned by reference method. 
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Call by Reference 
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