
Assist.Prof. Dr. Ümit ATİLA

Memory Structure
When a variable defined it is stored

somewhere in memory

Memory can be thought as block consist of
cells.

When a variable defined, required number of
cell from memory is allocated for the variable.

How many cell will be reserved for the variable
depends on the type of variable.

2

Memory Structure

3

Memory Structure
 If we illustrate the structure of memory after the code in previous slide.

 Assume that size of int is 2 byte, size of float 4 byte, size of char byte

 Each cell represents 1 byte space

 Memory portion for defined variables starts from the adress 4300

4

Memory Structure
 When a variable is defined, a space required for the variable is

reserved in the memory

 E.g.definition int num1 reserves 2 byte space for variable
num1

 After that if the value 5 is assigned on variable num1, 5 is
stored in memory location allocated for that variable.

 Actually, all operations taken on variable num1 is the
modification of cells in the memory location between 4300
and 4302.

 Variable is actually a memory location reserved for a particular
label.

5

Defining Pointers
 Pointer is a data type that shows the memory address of a

data block.

 veri tipi *p;

 Variable p stores the address of a variable which is in <veri
tipi> type

 int *iptr;

 float *fptr;

 The only thing we should pay attention is defining pointer
suitable for the data type it points.

 A float variable must only be pointed by a float type pointer.

6

Defining Pointers
 To make a pointer show the address of a variable, address

of the variable should be assigned to pointer.

 For this purpose we should know the adress of the
memory location used for the variable.

 It is possible with address operator &..

 &y  gives the address of variable y.

 int y = 5;

 int *yPtr;

 yPtr = &y;

7

Defining Pointers
After assigning the address of a variable to a

pointer. Pointer starts to show the address of
related variable.

 If we want to access or modify the value of a
variable with pointer, we should use *
character in the begining of pointer name.

All modifications done with * character in the
begining of pointer name effects the original
variable.

8

Defining Pointers

9

Defining Pointers
(Accessing Variables by Pointers)
• For accessing the value of a variable with pointer, we should

use * character in the begining of pointer name

10

Defining Pointers
(Associating Variables with Pointers)

11

Defining Pointers
 We can change the variable that pointer shows during our

program continuously.

12

Size of Pointers
● Pointers generally have a fixed size, for ex. on a 32-bit

executable they're usually 32-bit.

13

Pointers that Points other Pointers
 As seen pointers stores the memory addresses of

variables.

 Pointer is also a variable and an other pointer that
shows a pointer can be defined.

 If we define a pointer variable that shows a pointer;
we use '**' in the begining of pointer name.

 Number of * can change. If we define a pointer that
points an other pointer that points an other pointer
we have to use ‘***’.

14

Pointers that Points other Pointers

15

Pointer Arithmetic
 We can use increment, decrement (++,--), addition or subtraction

operators with pointers. An integer have to be added or
subtracted.

 When we increment the pointer by 1, pointer shows the next
data block.

 New pointer value depends on the data type that pointer shows.

int i , *iPtr;

iPtr = &i; // Assume iPtr shows address 1000

iPtr += 2 // After this operation new value of iPtr is 1008
(iPtr+2*4)

 Because int data type stored in 4 bytes in memory.

16

Pointer Arithmetic

17

Pointer Arithmetic
 int i , *iPtr;

 iPtr = &i; // Assume iPtr shows address 1000

 (*iPtr) ++; // Causes to increment value stored in the
address 1000.

 iPtr ++; // Causes iPtr to show adress 1004 in memory

 (*iPtr) +=2; // Causes to increment value by 2 stored in
1000 (*iPtr) =7; // Causes to assign 7 in address 1000.

 *(iPtr+2) = 5; //Causes to assign 5 in address 1008.

18

Relationship Between Pointers
and Arrays
 An array name can be thought of as a constant pointer.
 Arrays and Pointers are closely related
 Pointers can also point arrays like they point variables.

 int dizi [6];
 int *ptr;

 To set them equal use
– The array name dizi actually is the adress of first

element of the array dizi.
– ptr = dizi; //Now ptr[0] and dizi[0] is same.

– To explicitly assign ptr to the address of first
element of dizi
– ptr = & dizi[0];

19

Relationship Between Pointers
and Arrays

20

Relationship Between Pointers
and Arrays
 Pointers that shows arrays is generally used with

 *(ptr + n)  where n indicates the index number
of element in the array

 *(ptr + 4)  gets the value of element dizi [4]

 Alternatives to access element dizi [4]

 ptr[4]

 *(dizi + 4)

21

Relationship Between Pointers and
Arrays

22

Relationship Between Pointers and
Arrays

23

Relationship Between Pointers and
Arrays

24

Relationship Between Pointers and
Arrays

Arrays can contain pointers.

Can access multiple arrays with arrays of
pointers.

We just assign the starting address of
arrays to the arrays of pointers.

Any modification you make on array of
pointer will affect the original array.

25

Relationship Between Pointers
and Arrays

26

Call by Reference
 Normally a value of parameter sent to a function does not change.

And modifications in function does not effect original variable.

 The case in which the original variable is not changed but its copy is
sent to a function is called «call by value» or «pass by value».

 Sometimes we need to return more than one value from a function
or we need the original variable changed by the function.

 For this purposes we use "call by reference" or "pass by reference«

 In call by reference, arguments are not passed with their values, but
with their addresses. Thus, all modifications on arguments effect
the original variable.

27

Call by Value

28

Call by Reference

29

Call by Reference
 If your function has to return more than one value using pass

by reference is inevitable.

 Because return keyword can only send one value out of
function.

 For example, we want to write a division function that gives
division and remainder.

 In this case, divided number and divisor is sent to function and
remainder and division should be returned back from
function.

 As return keyword can only return one value, second value is
returned by reference method.

30

Call by Reference

31

