
Assist. Prof. Dr. Ümit ATİLA

Dynamic Memory Alocation
When a program executes, the operating

system gives it a stack and a heap to work
with.

 The stack is where global variables, static
variables, and functions and their locally
defined variables reside.

 The heap is a free section for the program to
use for allocating memory at runtime.

2

Dynamic Memory Alocation
We may need an array whose number of

elements may vary according to needs.

 For such kind of need, creating a large array to
solve the problem may consume memory in
vain.

More effective solution is using dynamic
memory allocation.

3

Dynamic Memory Alocation
 In dynamic memory allocation, amount of

memory needed is determined during the
execution of program.

malloc, calloc, or realloc are the three
functions used to manipulate memory.

 These commonly used functions are available
through the stdlib library so you must include
this library in order to use them.

#include<stdlib.h>
4

malloc
Use the malloc function to allocate a

block of memory for a variable.

If there is not enough memory available,
malloc will return NULL.

 int *ptr;

 ptr = (int *) malloc(n*sizeof(int));

5

calloc
 You can also ask for multiple blocks of memory

with the calloc function.

 If there is not enough memory available, calloc
will return NULL.

Unlike malloc function, performs an initial
value assignment.

 char *ptr;

 ptr = (char *)calloc(10, sizeof(char));

6

realloc
Realloc is used to resize an allocated

memory space.

A pointer that will point the starting
address of resized memory space and
new size are passed to realloc function as
parameter.

 void *realloc(void *ptr, size_t size);

7

free
In high level programming languages such

as (C#, Java) removing unused objects
from memory is achieved automatically
by Garbage Collector

Unfortunately, there is no garbage
collector for C language and bad and
good programmer is separated easily
with this issue.

8

free
 How important an effective memory management is

may be understood when we write large programs.

 We should avoid consuming memory in vain.

 Every call to an malloc or calloc function you must
have a corresponding call to free.

 int *ptr;

 ptr = (int *) malloc(n*sizeof(int));

free(ptr);

9

Sample-1

10

Sample-2

11

Sample-2

12

Pointers & Structs
 Structs may be passed to functions with a pointer
 struct ogrenci{
 char no[10];
 int notu;
 };
 struct ogrenci *a;
 For accessing the space allocated for variable a:
 *a.notu=56;
 strcpy((*a).no, "95001");
 An other way of this
 a->notu=56;
 strcpy(a->no, "95001");

13

Pointers & Structs

14

Dynamic Memory Allocation &
Arrays

15

Function Pointers
 A pointer to a function contains the address of the

function in memory.
 A function name is really the starting address in memory

of the code that performs the function’s task.
 int (*fPtr) (int,int)

 In this definition, fPtr shows the adress of a function
that takes two integer parameters and returns an
integer value.

 int *fPtr (int,int)
 In this definition, a function named fPtr is defined that

takes two integer parameters and returns an integer
pointer.

16

Function Pointers

17

Void Pointers
 Pointers can be defined in void type.

 We have to specify the type of data for accessing the data that void pointer
show.

18

