EE230 Homework Assignment #1

Due Date: April 13, 2013

Submit your solutions to room called as YEMMER till 17.00

- 1. Find the rate at which the scalar field $V = r^2 \sin(2\emptyset)$ in cylindrical coordinates increases in the direction specified by the vector $\bar{L} = \hat{a}_r + \hat{a}_{\emptyset}$ at the point $\left(2, \frac{\pi}{3}, 0\right)$.
- 2. A vector field, \overline{F} , is defined with the following expression:

$$\bar{F} = \hat{a}_x + \hat{a}_y z^4 + \hat{a}_z (4yz^3 + 5)$$

- a) Determine the divergence of \bar{F}
- b) Determine the curl of \bar{F}
- c) Find $\int_{c} \bar{F} \cdot \overline{d\ell}$

where the contour C is defined from point P1 = (0,0,3) to point P2 = (1,0,3) as shown in the figure.

- 3. Consider the vector field $\bar{A} = (x^2 + y^2)\hat{a}_z$ and the conical region shown in the figure.
- a) Verify the Divergence Theorem for the given geometry.
- b) Is this vector field expressible as the gradient of some scalar field? Support your answer.
- c) Is this vector field expressible as the curl of another vector field? Support your answer.

