
Assist.Prof.Dr. Ümit ATİLA

LINKED LISTS
 Linked lists are useful to study for two reasons.

 Most obviously, linked lists are a data structure.
Seeing the strengths and weaknesses of linked lists
will give you an appreciation of the some of the
time, space, and code issues which are useful to
thinking about any data structures in general.

 Somewhat less obviously, linked lists are great way
to learn about pointers. In fact, you may never use
a linked list in a real program, but you are certain
to use lots of pointers

 2

LINKED LISTS
Linked list problems are a nice

combination of algorithms and pointer
manipulation.

Traditionally, linked lists have been the
domain where beginning programmers
get the practice to really understand
pointers

3

LINKED LISTS
 A linked list is a data structure which can change during

execution.

 Successive elements are connected by pointers.

 Last element points to NULL

 It can grow or shrink in size during execution of a program.

 It can be made just as long as required.

 It doesn’t made waste memory

4

ARRAYS vs. LINKED LISTS
 Arrays are suitable for:

 Inserting/deleting an element at the end.

 Randomly accessing any element.

 Searching the list for a particular value.

 Linked lists are suitable for:

 Inserting an element.

 Deleting an element.

 Applications where sequential access is required.

 In situations where the number of elements can not be
predicted beforehand.

5

TYPES of LISTS
Depending on the way in which the links are

used to maintain adjacency, several different
types of linked lists are possible.
 1. Linear singly linked list (Linear List)

6

Liste Tipleri
 2.Circular linked list

 The pointer from the last element in the list points back to
the first element.

7

Liste Tipleri
 3.Doubly linked list

 Pointers exist between adjacent nodes in both
directions.

 The list can be traversed either forward or backward.

8

LINKED LISTS
 List is an abstract data type

 What is an abstract data type?

 It is a data type defined by the user.

 Typically more complex than simple data types like int,
float, etc.

9

Basic Operations on a List
Creating a list

Traversing the list

Inserting an item in the list

Deleting an item in the list

Concatenating two lists into one

10

Working with Linked Lists
Consider the structure of a node as follows:

11

Creating a Linear List
 To start with, we have to create a node (the

first node), and make head point to it

12

numara

ad

yaş

sonraki

Creating a Linear List
 If there are n number of nodes in the initial linked

list:

 Allocate n records, one by one.

 Read in the fields of the records.

 Modify the links of the records so that the chain
is formed.

13

Creating a Linear List

14

Traversing the List
Once the linked list has been constructed and

head points to the first node of the list,

 Follow the pointers.

Display the contents of the nodes as they
are traversed.

 Stop when the next pointer points to NULL

15

Traversing the List

16

Inserting a Node in a List
 For insertion:

 A record is created holding the new item
 The next pointer of the new record is set to link it to

the item which is to follow it in the list.
 The next pointer of the item which is to precede it

must be modified to point to the new item.

 The problem is to insert a node before a specified
node.
 Specified means some value is given for the node

(called key).
 In this example, we consider it to be roll

17

Inserting a Node in a List

18

Inserting a Node in a List
 When a node is added at the beginning,

 Only one next pointer needs to be modified.

 Head is made to point to the new node.

 New node points to the previously first element.

 When a node is added at the end,
 Two next pointers need to be modified.

 Last node now points to the new node.

 New node points to NULL

 When a node is added in the middle,
 Two next pointers need to be modified.

 Previous node now points to the new node.

 New node points to the next node.

19

Inserting a Node in a List

20

Inserting a Node in a List

21

Deleting a Node from the List
● For deletion:

● The next pointer of the item immediately preceding the one to be
deleted is altered, and made to point to the item following the
deleted item.

22

Deleting a Node from the List
To delete a specified node.

Say, the node whose roll field is given.

Three conditions arise:

Deleting the first node.

Deleting the last node.

Deleting an intermediate node.

23

Deleting a Node from the List

24

Deleting a Node from the List

25

Singly Linked List Application-1

26

Singly Linked List Application-2
A linear list application that has

capability of listing nodes in
alphabetical order, inserting nodes,
deleting a specified node and finding
the record that has maximum
number of characters in the list.

27

Singly Linked List Application-2

28

Singly Linked List Application-2

29

Singly Linked List Application-2

30

Singly Linked List Application-2

31

Singly Linked List Application-2

32

Singly Linked List Application-2

33

Singly Linked List Application-2

34

