
Assist. Prof.Dr. Ümit ATİLA

Sorting
● Placing a group of data in descending or ascending

order.

● Sorting data is very useful for computer systems

● Makes searching and listing a group of data faster and
easier.

● Most popular sorting algorithms:

● Insertion sort

● Selection sort

● Bubble sort

● Quick sort

Bubble Sort
● Time complexity is O(n2)

● If c number of item of n items is not
sorted time complexity is O(c n)

● Design of algorithm is easy but algorithm
is not efficient.

● Can be used for small size lists or lists
having mostly sorted items.

Bubble Sort
● Array to be sorted : [7,3,5,1,2]

● Hareket 1- Çevrim-1
[3,7,5,1,2]

● Hareket 1- Çevrim-2
[3,5,7,1,2]

● Hareket 1- Çevrim-3
[3,5,1,7,2]

● Hareket 1- Çevrim-4
[3,5,1,2,7]

● Hareket 2- Çevrim-1
[3,5,1,2,7]

● Hareket 2- Çevrim-2
[3,1,5,2,7]

● Hareket 2- Çevrim-3
[3,1,2,5,7]

● Hareket 2- Çevrim-4
[3,1,2,5,7]

● Hareket 3- Çevrim-1
[1,3,2,5,7]

● Hareket 3- Çevrim-2
[1,2,3,5,7]

● Hareket 3- Çevrim-3
[1,3,2,5,7]

● Hareket 3- Çevrim-4
[1,3,2,5,7]

● Hareket 4- Çevrim-1
[1,3,2,5,7]

● Hareket 4- Çevrim-2
[1,2,3,5,7]

● Hareket 4- Çevrim-3
[1,2,3,5,7]

● Hareket 4- Çevrim-4
[1,2,3,5,7]

Bubble Sort

Bubble Sort

Insertion Sort
 Appropriate for inserting an item

into an already sorted list of data.

 Complexity of inserting an item into
an already sorted list of data: O (n)

 If list or array is not sorted
complexity:O (n2)

Insertion Sort
● Array to be sorted : [7,3,5,8,2]

● Initial state : [7][3,5,8,2]

Before After

[7,3][5,8,2] [3,7][5,8,2]

[3,7,5][8,2] [3,5,7][8,2]

[3,5,7,8][2] [3,5,7,8][2]

[3,5,7,8,2][] [2,3,5,7,8][]

Insertion Sort Example

Insertion Sort Example

Selection Sort
 If an item is in its true place it does not change its order.

 Change of items is less in half sorted group of data.

 Take the first item in the list and exchange with the
minimum item of others. Repeat this until the last item.

Before After

[][7,3,5,1,2] [1][3,5,7,2] 1 and 7 exchanged

[1][3,5,7,2] [1,2][5,7,3] 2 and 3 exchanged

[1,2][5,7,3] [1,2,3][7,5] 3 and 5 exchanged

[1,2,3][7,5] [1,2,3,5][7] 5 and 7 exchanged

[1,2,3,5][7] [1,2,3,5,7][] end

Selection Sort Example

Selection Sort Example

Quick Sort
● Works on divide and conquer strategy

● The list is divided into two equal parts.

● Values smaller than middle value is collected on left side
and others collected on right side.

● This process is repeated for each part.

● The algorithm is implemented with a two recursive call
for each divided part individually.

● Despite it is the fastest algorithm, it may not be chosen
for small number of items or mostly sorted items.

Quick Sort

Quick Sort

Searching
● The process of finding a particular element of

an array is called searching.

● Two searching techniques will be discussed

● Linear search

● Binary search

Linear Search
● Compares each element of the array with the

search key.

● Since the array is not in any particular order, it is
just as likely that the value will be found in the first
element as in the last.

● In the worst case with N number of elements, the
algorithm's complexity is O(N)

● It should not be used in large size arrays.

Linear Search

Linear Search

Binary Search
● The linear search works well for small or unsorted

arrays.

● However for large arrays, linear search is inefficient.

● If the array is sorted the high speed binary search can be
used.

● The binary search algorithm eliminates from
consideration one-half of the elements in a sorted array
after each comparison.

Binary Search
● The algorithm locates the middle element of the array

and compares it to the search key.

● If equal, match found

● If key < middle, reduce problem for looking in first half of
array

● If key > middle, reduce problem for looking in last half of
array

● Repeat until the search key is equal to the middle element
of a subarray, or until the subarray consists of one element
that is not equal to the search key (i.e the search key is not
found).

Binary Search

Binary Search

Binary Search
● Very fast; at most n step, where 2n > number of elements

● 30 element array takes at most 5 step (25 > 30 so at most
5 steps)

● In a worst case-scenario, searching an array of 1023
elements takes only 10 comparisons using a binary search.

● Repeatedly dividing 1024 by 2 yields the values 512, 256,
128, 64, 32, 16, 8, 4, 2 and 1.

● The number 1024 (210) is divided by 2 only 10 times to get
the value 1.

● Dividing by 2 is equivalent to one comparison in the
binary search algorithm.

Binary Search
● An array of 1048576 (220) elements takes a maximum of

20 comparisons to find the search key.

● An array of one billion elements takes a maximum of 30
comparisons to find the search key.

● This is a tremendous increase in performance over the
linear search that required comparing the search key to an
average of half of the array elements.

● For a one-billion-element array, this is a difference
between an average of 500 million comparisons and a
maximum of 30 comparisons!

